

Best practice bicycle safety – improvement fact sheet

Overpasses and underpasses

Overview

Where cycling routes intersect with roads that have high annual average daily traffic (AADT), crossings should be grade-separated to provide maximum level of both safety and mobility. Overpasses and underpasses can also be used to cross other barriers – railroads, rivers or canals, cliffs etc. This type of infrastructure provides continuity of access for bicyclists and prevents significant detours. Over- and underpasses encompass different types of structures, including bridges, and are usually very expensive, though some cost savings can be achieved depending on the materials used.

Types of problems that the solutions can solve

Effectively planned and designed over- and underpasses can support safe pedestrian and cyclist movements, provide a cost-effective crossing option to meet identified desire lines, reduce delays to traffic, and provide network connectivity [7].

One research [3] stated that installation of grade separated intersections (bicycle bridges or tunnels) to cross distributor roads was found to be related to **strong reductions in the fatality crash rate:** A score that was developed to measure network level separation for Dutch

municipalities corresponded to a **24% decrease** in the likelihood of **fatal bicycle** crashes. The score combines the share of bicycle kilometres through traffic-calmed areas and the number of bicycle tunnels and bridges to cross distributor roads per bicycle kilometre.

However, it is important that over- and underpass are accessible for cyclists (e.g., no stairs), have a reduced slope and sufficiently comfortable dimensions with regard to the existing volume of cyclists [4].

Characteristics

Measure	Costs	Treatment life	Effectiveness
Overpass [2]	€€€	000	<i>ক</i> ৯ <i>ক</i> ৯ <i>ক</i> ৯
Underpass [2]	€€€	000	<i>֎</i> ቝ <i>֎</i> ቝ

Implementation benefits

	Separation from motorised traffic significantly increases safety	
Ty.	May offer some shelter from wind and rain	
#	Can be spectacular landmarks that help to create awareness and promote the route	

Implementation issues

SA SA	Possible conflict points at entrances and exits	
ري	Costs are relatively high	
<u>~~~~</u>	Extra buffers may be needed for "shy distance" from railings or from traffic to protect bicyclists from sudden wind blasts or gusts.	

Examples:

Eisenhower **tunnel** on the F325 cycle highway, the Netherlands. Straight approach, good visibility and smooth curves at the tunnel entrance, sunlight windows further in the picture [5]

Cycling bridge in Slovakia [6]

SOLUTIONS

Related fact sheets

RISKS

- » Network issues
- » Narrow infrastructure
- » Speed differences in mixed spaces with pedestrians, E-Scooters etc.
- » Speed differences in mixed spaces with motorised traffic

References and links

- The State of Queensland (2020). Bicycle rider and pedestrian underpasses.
 In: https://www.tmr.qld.gov.au/-/media/busind/techstdpubs/Cycling/Guideline-Bicycle-riderand-pedestrian-underpasses.pdf?la=en
- 2. Bushell, M.A., Poole, B.W., Zegeer, C.V., Rodriguez, D.A. (2013). Costs for Pedestrian and Bicyclist Infrastructure Improvements. In: https://www.pedbikeinfo.org/cms/downloads/Countermeasure%20Costs_Report_Nov2013.pdf
- 3. Schepers, P., Twisk, D., Fishman, E., Fyhri, A., Jensen, A. (2017). The Dutch road to a high level of cycling safety. Safety science, 92, pp.264-273.
- 4. PRESTO Promoting cycling for everyone as a daily transport mode (2015): Grade Separation. Implementation Fact Sheet. http://www.rupprecht-consult.eu/uploads/tx_rupprecht/11_PRESTO_ Infrastructure_Fact_Sheet_on_Grade_Separation.pdf
- 5. https://cyclehighways.eu/design-and-build/infrastructure/tunnels-and-bridges.html#gallery-466-1
- 6. http://www.interreg-danube.eu/approved-projects/danubeparksconnected/section/cycling-the-danube-in-slovakia

Publisher & Media Owner: SABRINA Project Partners

Contact: Mrs. Olivera Rozi, Project Director, European Institute of Road Assessment –
EuroRAP I olivera.rozi@eurorap.org | www.eira-si.eu

Graphic Design: Identum Communications GmbH, Vienna I www.identum.at
Image credits: iStock, SABRINA Project Partners

Copyright ©2022

